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Abstract:  We can view intrusion detection as a game, placing us firmly in the emerging field of adversarial 
machine learning.  In adversarial machine learning, opponents deliberately attempt to generate data that 
causes traditional machine learning algorithms to behave poorly in security applications.   This paper 
gives a brief overview of the field, and discusses several attacks and defenses, as well giving theoretical 
limits derived from a study of near-optimal evasion. 
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Computer security is often viewed as a game where various players make moves.  An attacker (opponent) 
makes a move, and in response a defender makes a move, which in turn causes the opponent to make a new 
move, and so on.  This powerful paradigm has long proven effective at helping us to analyze computer 
security.  So let us apply the “game” paradigm to statistical machine learning in computer security 
applications.  Advocates of machine learning argue, with good reason, that it is a powerful technique:   if 
machines can learn when a system is functioning normally and when it is under attack, then we can build 
mechanisms that automatically and rapidly respond to emerging attacks. Such a system might be able to 
automatically screen out a wide variety of spam, phishing, network intrusions, malware, and other nasty 
Internet behavior. But the actual deployment of machine learning in computer security has been less 
successful than we might hope. What accounts for the difference? 

Attacks on machine learning systems 

To understand the issues, it is helpful to look “under the hood” more closely at what happens when we 
use machine learning. Perhaps the most popular model is supervised learning, in which we train a system 
using labeled data – that is data that has been marked as “attack” or “benign.”  For example, in a spam 
email detector, we would label a set of training email messages as spam or ham (although it doesn’t sound 
very kosher, “ham” is a term used to denote non-spam email). The machine learning algorithm then 
produces a classifier, which takes unlabeled email messages as input, then classifies them as likely spam or 
ham. During training, a classifier is likely to learn that terms such as “Viagra” or “V1@gr@,” for example, 
are a strong indicator of likely spam. 

In this model the move of the opponent is to try to cause the supervised learning system to behave 
poorly.  The opponent will try to craft input that causes it to misbehave. 

Good machine learning algorithms are designed to perform well even if they get some random badly 
labeled input (such as a spam message that is accidentally mislabeled as ham). However, in the context of 
computer security, this does not go far enough. Adversaries (in this case, spammers) might play dirty by 
creating an adversarial training set: instead of sending “normal” spam, they might send (Byzantine) 
“tricky” spam designed to make the classifier misbehave.  

This is not merely a theoretical observation.  Here are some fragments from some apparent tricky spam 
email messages that my colleagues and I have collected (complete with original spelling and punctuation): 

• “what, is he coming home, and without poor lydia?” she cried. “sure he will not leave London 
• “i am quite sorry, lizzy, that you should be forced to have that disagreeable man all to yourself. 
• calvert dawson blockage card. coercion choreograph asparagine bonnet contrast bloop. 

coextensive bodybuild bastion chalkboard denominate clare  churchgo compote act. childhood 
ardent brethren commercial complain concerto depressor. 

• brocade crown bethought chimney. angelo asphyxiate brad abase decompression codebreak. 
crankcase big conjuncture chit contention acorn  cpa bladderwort chick. cinematic agleam 
chemisorb brothel choir conformance  airfield. 



Do you recognize any part of these messages? The first two fragments are quotes from Jane Austen’s 
Pride and Prejudice. The second two messages are lists of less-common words in English. These tricky 
spam messages poison the training set. When they are labeled as spam and fed to a machine learning 
algorithm, they dilute the quality of spam detection. The algorithm could infer a rule that a benign term 
(such as “Lydia,” “London,” “brethren,” or “chimney”) is actually a marker for spam. When the classifier 
begins to label its inputs, it will generate false positives: ham that is incorrectly marked as spam. Large 
numbers of false positives undermine users’ confidence in the learning algorithm. In practice, users find 
that their spam detectors seem tone-deaf and often misclassify email, requiring them to constantly check 
their “likely spam” mailboxes to manually retrieve misclassified ham. 

Other types of attacks are also possible. For example, in systems that continually retrain, an adversary 
might try a “boiling-frog” attack. (Legend has it that if you drop a frog in a boiling pot of water, it will 
quickly jump out; but if you put a frog in lukewarm water and then slowly raise the heat, the frog cannot 
detect the slow change and will ultimately be boiled.) Consider using machine learning to detect abnormal 
network traffic. In a boiling-frog attack, an adversary slowly introduces aberrant input, and the system 
learns to tolerate it. Ultimately, the classifier learns to tolerate more and more aberrant input, until the 
adversary can launch a full-scale attack without detection. 

These examples help to motivate the new science of adversarial learning – the development of machine 
learning algorithms that are effective even when adversaries play dirty.  Adversaries have a variety of 
goals – we have identified at least three independent axes describing types of adversarial attacks:   

• Influence:  Causative (try to influence data and training) vs. Exploratory (probing during the test 
phase) 

• Security target:  Integrity (generate false negatives) vs. Availability (generate false positives) 
• Specificity:  Targeted (influence the classification of a particular input) vs. Indiscriminate 

(influence the classification of all types of inputs) 

Hardening machine learning 

These examples highlight the failings of classical machine learning. The good news is that a new science 
of adversarial machine learning is emerging — the development of algorithms that are effective even when 
adversaries play dirty.  

My colleagues and I at UC Berkeley — as well as other research teams around the world — have been 
looking at these problems and developing new machine learning algorithms that are robust against 
adversarial input. One technique that we’ve used with great success is Reject On Negative Impact (RONI). 
In RONI, we screen training input to make sure that no single input substantially changes our classifier’s 
behavior. This has a cost (we need a larger training set), but it also forces the adversary to control a much 
larger fraction of the input to mis-train the classifier. 

The search for adversarial machine learning algorithms is thrilling: it combines the best work in robust 
statistics, machine learning, and computer security. One significant tool security researchers use is the 
ability to look at attack scenarios from the adversary’s perspective (the black hat approach), and in that way, 
show the limits of computer security techniques. In the field of adversarial machine learning, this approach 
yields fundamental insights. Even though a growing number of adversarial machine learning algorithms are 
available, the black hat approach shows us that there are some theoretical limits to their effectiveness.  

One powerful family of results that come from the black hat approach is called near-optimal evasion. 
We start by “thinking like a spammer.” Suppose we want to sell Viagra via unsolicited email. If we try a 
direct approach, we’re certain to have our email automatically classified as spam. So, we’ll try to avoid this 
by modifying our message. For example, instead of using an email subject line such as “Cheap Online 
Pharmacy,” we can try a subject line that promises instead a “Moderate Online Apothecary.” We assume 
that we have sufficient access to a spam detector that we can pre-test our messages to see whether they’re 
classified as spam. First, we identify our positive target spam message hawking Viagra. We cannot send 
this message because it is certain to be identified as spam. We call our target message “positive” because 
the classifier will give it a positive classification as spam. At the other end, we find some message that’s 
completely benign and that avoids detection as spam. We call this our “negative” instance (because the 
classifier returns a negative result: it is not spam.) So now we have two extremes. We can perform a type of 
binary search — finding intermediate messages between these two extremes. When we get two messages 
that are close to each other — one classified as spam, the other classified as ham — we know we are near 



the classifier’s boundary. We can send the message that is classified as ham, and we say that it is “nearly 
optimal” but evades detection. 

Now, we turn the tables again (switching roles in the “game”) and resume the role of defender. We 
naturally ask: Can we stop this black hat attack? It turns out that for an important type of classifier, known 
as convex classifiers, we cannot stop it. The binary search strategy of a spammer is simply too strong.  This 
shows the boundaries of the underlying theoretical limits of what is possible in adversarial machine 
learning.  To get beyond them, we will either need to make our systems more complicated (going beyond 
convex classifiers) or use a fundamentally new strategy that no long depends as much on machine learning.   

While some of the questions in this field have a theoretical flavor, at the end of the day, this is not a 
theoretical field. We need real-world machine learning algorithms that perform well even in adversarial 
environments. And while various research groups around the world are hard at work developing powerful 
adversarial machine learning algorithms, more work is needed before machine learning can fulfill its full 
promise in improving our cybersecurity algorithms.   (To find out more about the field and the examples I 
mention, visit http://radlab.cs.berkeley.edu/wiki/SecML). 
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